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Abstract 

Background:  The digital pathology images obtain the essential information about the patient’s disease, and the 
automated nuclei segmentation results can help doctors make better decisions about diagnosing the disease. With 
the speedy advancement of convolutional neural networks in image processing, deep learning has been shown to 
play a significant role in the various analysis of medical images, such as nuclei segmentation, mitosis detection and 
segmentation etc. Recently, several U-net based methods have been developed to solve the automated nuclei seg-
mentation problems. However, these methods fail to deal with the weak features representation from the initial layers 
and introduce the noise into the decoder path. In this paper, we propose a multiscale attention learning network 
(MSAL-Net), where the dense dilated convolutions block captures more comprehensive nuclei context information, 
and a newly modified decoder part is introduced, which integrates with efficient channel attention and boundary 
refinement modules to effectively learn spatial information for better prediction and further refine the nuclei cell of 
boundaries.

Results:  Both qualitative and quantitative results are obtained on the publicly available MoNuseg dataset. Extensive 
experiment results verify that our proposed method significantly outperforms state-of-the-art methods as well as 
the vanilla Unet method in the segmentation task. Furthermore, we visually demonstrate the effect of our modified 
decoder part.

Conclusion:  The MSAL-Net shows superiority with a novel decoder to segment the touching and blurred back-
ground nuclei cells obtained from histopathology images with better performance for accurate decoding.
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Introduction
Cancer grading has an essential importance in clinics 
because it allows doctors to treat patients more effec-
tively and analyze the effectiveness of treatments. The 
microscopic images are broadly utilized to diagnose 
tumors in clinical medicine, consists of vital information 
about encompassing the tissue structure and tumors. The 
particular structures of tissue such as glands, collagen 

and nuclei are stained to highlight. The hematoxylin and 
eosin (H&E) staining is the most common method for 
separating nuclei and cytoplasm in slices. The character-
istics of nuclei are used by clinicians to grade tumor, and 
in the slices, morphology and nucleus polymorphism are 
observed.

Digital pathology has gained significant research focus 
in the medical field due to the constant advancement of 
software and hardware proficiencies. Whole slide images 
(WSIs) can be obtained using high-intelligence and auto-
mation scanning devices to create an advanced database 
of digital pathology. Computerized strategies have proven 
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effective in explaining a wide range of pathology issues 
for analyzing histopathological images [1, 2]. Nuclear 
characteristics are crucial parameters for cancer grad-
ing during diagnoses, such as form, texture, and spatial 
arrangement. For a computer-aided diagnosis framework 
to quantify cellular morphology in cancer diagnosis, 
accurate nuclei segmentation is a key and fundamen-
tal step [3]. Manual segmentation of the nuclei in sliced 
tissue is used in traditional cancer diagnosis, although 
this method is tedious and prone to false positives given 
a large number of nuclei. Thus, implementing an auto-
mated nuclei segmentation method in digital pathology 
image processing remains problematic due to the nucleus 
occlusion and overlapping, shape variations, image arte-
facts, and blurred background [4]. The classical nuclei 
strategies based on thresholding [5], region splitting and 
merging [6], clustering [7], watershed segmentation [8], 
graph-based segmentation [9], pixel classification [10], 
level set [11] and so on. Due to the relevance of nucleus 
information in medicine, many researchers have pro-
posed different approaches for pathology images seg-
mentation. These methods are unsuccessful when applied 
to pathology images, and Fig. 1 shows some examples of 
nuclei pathology images and corresponding segmenta-
tion masks.

Recently, deep learning algorithms such as convo-
lutional neural networks (CNN) [14] and autoencod-
ers [15] have gained a more scientific research value in 
computer vision, especially in recognition and image 

segmentation. Compared to traditional image segmenta-
tion methods, these algorithms have been widely applied 
in medical image analysis. CNN techniques demonstrate 
remarkable outcomes for digital pathology image analy-
sis, including tissue classification [16], mitotic detection 
[17, 18] and nuclei segmentation [19–21]. The fundamen-
tal difficulties with CNN models are that they are based 
on a fully convolutional network (FCN) [22] that reduces 
the resolution of the feature maps by using the down-
sampling operations to obtain rich semantic informa-
tion. FCN raises the resolution of the feature maps using 
upsampling operations, but it also results in the loss of 
certain target object features when the final output reso-
lution is set to the same as the original image. In order 
to overcome this limitation, Ronneberger et al. [23] pro-
posed an Unet method based on FCN, which used skip 
connections to combine the spatial information from the 
encoder path with the decoder path to retain good spa-
tial information. However, this process brought the poor 
feature representation from the initial layers and intro-
duced the noise into the decoder. Kong et  al. [24] pro-
posed a two-stage stacked Unets, where the first stage 
aimed to segment nuclei regions, and the second stage 
was considered to segment regions of overlapping nuclei. 
The stacked Unets were successful in segmenting nuclei. 
However, training was difficult due to the high experi-
mental hardware requirements. Inspired by [25], He et al. 
[26] proposed a Hybrid Nested-Unet, which employed 
UNet’s nested multiple convolution blocks to bridge the 

Fig. 1  Show some examples of original pathology images in two different datasets, the first row represents the MoNuSeg dataset images [12], and 
the second row represents the TNBC dataset images [13]



Page 3 of 11Ali et al. BMC Medical Informatics and Decision Making           (2022) 22:90 	

possible semantic gap between the encoder-decoder lev-
els in classic Unet. However, it was better to introduce a 
new pipeline instead of increasing the model complexity. 
Recently, some methods were introduced based on atten-
tion mechanisms [27–29], which allowed the network to 
focus on the meaningful features between the encoder 
and decoder. However, these methods were confirmed to 
be crucial for the accurate decoder in the nuclei segmen-
tation task and Later made segmentation of touching and 
overlapping nuclei problematic. Notably, during H&E 
staining and scanning, the boundaries of nuclei in pathol-
ogy datasets may become blurred.

In recent years, transfer learning has been a benefi-
cial method and widely applied in medical image tasks 
when the training samples are in shortage. However, 
deep learning algorithms prone to overfitting on the 
small training samples and the time-consuming image 
labelling task solve this problem [30–34]. In contrast, 
our proposed method effectively alleviates this obsta-
cle and increases network performance by decomposing 
training images into small patches as well as using the 
data augmentation technique. The overview of our pro-
posed multiscale attention learning network (MSAL-Net) 
for accurate nuclei segmentation is presented in Fig.  2. 
An encoder block in the network extracts the semantic 
and spatial information from the input of histopathol-
ogy images. The dense dilated convolutions (DDC) are 
then combined in order to generate more high-level 

feature maps. Finally, the decoder path learns spatial 
information and recovers the touching and overlapping 
of complicated nuclei object boundaries without blurred 
background, which can be easily overlooked or identi-
fied mistakenly using some standard image segmentation 
methods. Compared with other methods, MSAL-Net has 
achieved better segmentation results and performance 
in nuclei segmentation tasks. The extensive experimen-
tal results demonstrate the effectiveness of our proposed 
method.

The contribution of this research study are: (1) We 
employ the residual blocks in the encoder to improve the 
feature extraction capability of the network. (2) In order 
to generate more high-level features maps and reduce the 
semantic gap between the encoder and decoder, we add a 
dense dilated convolution (DDC) block in the middle of 
the network. (3) We present an idea of a novel decoder 
path that combines with the ECA and BR modules to 
learn the essential feature map, refine the information of 
nuclei boundaries, and significantly enhance the network 
performance for accurate decoding. (4) we combine the 
encoder-decoder architecture with the DDC and ECA + 
BR modules for nuclei segmentation in histopathology 
images is present. (5) The experiments have been carried 
out on the public nuclei histopathology dataset. Addi-
tionally, some selected advanced semantic segmentation 
approaches compared with the proposed model and the 
outcomes of all experiments are thoroughly examined. 
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Fig. 2  Displays the overview of our proposed method for nuclei segmentation on pathology images
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The experimental results reveal that our method learns 
robust features and produces an outstanding effect in the 
segmentation. Besides, our proposed model also com-
pared with the current state-of-the-art approaches.

Methodology
Proposed method architecture
Overview
Motivated by the ResNet [35], Inception Net [36], Dilated 
Convolutions [37], Efficient Channel Attention (ECA) 
[38] and U-net [23], we introduced a novel method 
for accurate nuclei segmentation called MSAL-Net, as 
shown in Fig. 3b. Initially, the encoder structure extracted 
the spatial information from the input of histopathology 
images, and the DDC block was used to extract high-
level feature maps in the middle part of the network. The 
decoder structure learned spatial information for better 
prediction and strengthened the nuclei boundaries.

Encoder structure
In our proposed method, the structure of the encoder 
was modified from the Unet design and replaced it with 
the In-Block, 4 Residual-Blocks of Resnet 34 [35] pre-
trained from ImageNet, while the original Unet encoder 
of each block consisted of convolution layers and max-
pooling layers. The first input of histopathology image 
passed through the initial encoder In-Block of the net-
work, which performed convolutional block and max-
pool layers at input features such as 3 × 512 × 512 with 
a kernel size of 7 × 7 and stride of 2. The max-pool layer 

reduced the feature map to half its original input size. 
Subsequently, there was 4 Residual-Blocks without the 
average pooling and the fully connected layers, which 
was lighter, more efficient in computation and accuracy. 
Each Residual-Block doubled the feature channel and 
scaled down the image by a variable of two. These Resid-
ual-Blocks allowed the network to better aggregate infor-
mation between encoder and decoder layers. Besides, 
Residual-Blocks used a shortcut to avoid gradient vanish-
ing and enhanced the network convergence, as shown in 
Fig. 3a.

Dense dilated convolutions
In semantic segmentation tasks, the pooling layers 
caused the loss of semantic information in images [39]. 
Inspired by the dilated convolutions and Inception series 
structures, we use the DDC block in the middle part of 
our network to encode the high-level semantic feature 
maps, as depicted in Fig.  4. The encoder structure con-
tains five downsampling layers, and if an image of a size 
512 × 512 passes through it, the output feature map 
size will be 16 × 16 pixels. If the stacked DDC are from 
1 to 1, 3, 5, respectively, then the receptive field of every 
layer will be 3, 7, 9, 19. Each dilated convolutional layer 
receives one 1 × 1 convolution for rectified linear acti-
vation. Finally, we incorporate into the original features 
other elements, such as the ResNet shortcut mechanism. 
The DDC enhances the receptive fields in the network 
and does not reduce the resolution of the feature maps.

Fig. 3  a Demonstrates the residual blocks, where each block consists of 3× 3 convolution and b shows the network architecture, where the 
downsampling layers (In-Block, Residual-Blocks) receive the input of RGB image, then DDC is applied in the middle part, and upsampling layers 
(Decoder-Block) deliver the final output. The green arrows represent the skip connections between the contraction to expansion path. Furthermore, 
each convolutional block uses a conv, batchnorm, and relu layer, whereas each deconvolutional block uses a deconv, batchnorm and relu layer
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Decoder structure
The decoder was used to retrieve the combined spatial 
information from the encoder and dense dilated con-
volutions block. However, skip connection brought the 
poor feature representation from the initial layers and 
introduced the noise into the decoder. Similar to [40], 
each block of the decoder reduced the number of feature 
channels by half and increased the image size by a factor 
of two, as illustrated in Fig. 3b. After each decoder block, 
we employed a parallel efficient channel attention (ECA) 
module of the same dimension as shown in Fig. 5a. ECA 
used 1D convolution to construct a local cross channel 
interaction method that required dimensionality reduc-
tion and could be done efficiently. ECA suppressed less 
significant feature maps and enhanced overall perfor-
mance via boosting up essential features. The segmenta-
tion results were better predicted and refined using the 
boundary refinement (BR) module [41] after the decoder 
block. The BR module built residual structure by apply-
ing three convolution filter sizes from extracted features, 

as shown in Fig. 5. The sigmoid function was used to pre-
dict the final segmentation outcome.

Results
Dataset
The MoNuseg dataset consists of 44 pathological tissue 
slices and is stained with H&E captured at 40x magnifi-
cation. Paches sampled from whole slide images with a 
fixed size of 1000 × 1000 pixels, these sample images have 
taken out from multiple organs and collected from 18 dif-
ferent hospitals. There are 30 images in the training set, 
and 14 images are in the testing set. The training set man-
ually labeled nuclei are 21,623, and the testing set manu-
ally labelled nuclei are 21,000. Moreover, the images are 
marked by experienced pathologists with the associated 
ground truth [12]. Subsequently, patches are resized to 
512 × 512 pixels from 4 corners of each image [42] and 
fed into the MSAL-Net. There are 176 patches in total, 
and 120 patches are used for training, and 56 patches are 
used for testing.
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Fig. 4  Illustrates the dense convolutions block, which is based on cascade mode [37]

Fig. 5  a Shows the diagram of the ECA module, where the GAP denotes the global average pooling, k represents the kernel size, C, H, and W 
represent the channel, height and width, denotes the sigmoid [38], and b displays the boundary refinement module, where 3 × 3 represents the 
convolutional filter size
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Implementation details
The proposed MSAL-Net was built by PyTorch [43] deep 
learning library and tested it on the GPU GTX 1080 Ti with 
16 GB of memory. The input images are resized by 512 × 
512 and then fed into the network. During the training 
and testing phases, we employed batch size 2 and trained 
the network with 300 epochs. The learning rate was set to 
0.001 with the Adam optimizer, and the network employed 
a pre-trained ResNet-34 structure. A decay rate of 0.00003 
was used to mitigate cross-entropy loss in nucleus segmen-
tation tasks. A variety of data augmentation techniques 
were used on the training set, including random horizontal 
and vertical flipping, random rotation from -15 to 15, ran-
dom shifting in x and y directions, random shearing, and 
random zooming from 0.0 to 0.2, as illustrated in Fig. 2.

Performance metrics
The four metrics used to evaluate the effectiveness of our 
proposed method in the nuclei segmentation tasks such as 
Dice coefficient (DC), Intersection over Union (IoU) Preci-
sion (PR), and Recall (RC). These matrices formulas can be 
computed as:

First, let say A = TP and B = TP + FP + FN

Now, we have

(1)Dice(A,B) =
2|A ∩ B|

|A| + |B|

The DC and IoU metrices values will be between 0 and 
1. The ∪,∩ symbols signify the mathematical operations 
union and intersection. The TP, FP, and FN are used to 
calculate the pixel level difference between the expected 
image and the ground truth target. Moreover, TP, FP and 
FN represent the number of correctly segmented pix-
els, the number of pixels that appear in the segmenta-
tion results, and the number of pixels that appear in the 
ground truth, respectively (Fig. 6).

Ablation study
This section explained the ablation study to demonstrate 
the efficacy of each component in the MSAL-net on the 
test set, as indicated in Table  1. The different trained 
components of our model results, such as, Backbone + 
DDC, Backbone + ECA, Backbone + Res-34 + DDC, 
Backbone + ECA + BR, Backbone + DDC+ ECA, and 
Backbone + Res-18 + DDC + ECA + BR were listed in 
the first row. The k denoted the size of the convolutional 

(2)IoU(A,B) =
|A ∩ B|

|A ∪ B||

(3)PR =
TP

TP+ FP

(4)RC =
TP

TP+ FN

(a) (b) (c) (d) (e) (f)
Fig. 6  Shows the comparison with other methods through red boxes a input image, b ground truth, c U-net results, d Attention U-net results, e 
CE-Net results, and f proposed MSAL-Net results
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filters used in the ECA and BR modules to extract data, 
while the “–” symbol signified missing values. The evalu-
ation metrics results of each component were repre-
sented in the next four parts of the table, and the last 
part reflected the computational training time in sec-
onds. Unet is one of the essential frameworks in medical 
images segmentation problems, and it was the corner-
stone for our proposed approach (Fig.  7). The encoder 
element of the network was replaced by residual opera-
tions (ResNet 34 block), which allowed it to train deeper 
and increase learning capabilities such as backbone + 
ResNet outperformed the baseline with a DC of 0.79. 
The dense dilated convolutions block was stacked at dif-
ferent rates to enlarge the receptive field of view, reduce 
the loss of image information, extract high-level features 
and improve performance 0.810 DC (Backbone + DDC). 
We found that the both ECA module with backbone and 
ECA + BR with backbone improved performance and 
segmentation significantly. Besides, when compared to 

other Res-18, Res-50, and Res-101 backbones, MSAL-
Net with Res-34 achieved efficient outcomes at DC 0.839 
and IoU 0.706 during training. The proposed model 
enhanced DC performance by 1.5 percent and IoU per-
formance by 1 percent with the Res-50 backbone. Thus, 
MSAL-Net with Res-101 reduced performance by 0.09 
percent in DC and 1 percent in IoU compared to Res-50. 
However, these two backbones increased the network’s 
training time and made it slow. Besides, we recorded the 
loss changes of different combinations for the proposed 
model during the training process, as displayed in Fig. 8. 
We observed from Fig. 8 that the training losses of these 
combinations Backbone + ECA, Backbone + ECA + BR, 
Backbone + DDC+ ECA, and DDC + ECA + BR + Res- 
34 (MSAL-Net) remained stable compared to others, 
which proved the proposed model good convergence, 
generalization and stability.

(c) (d)(b)(a)
Fig. 7  Represents some segmentation examples of decoder, a input image, b ground truth, c result of MSAL without ECA + BR modules, d and the 
result of MSAL with ECA + BR modules
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The effect of ECA and BR with decoder
The proposed method demonstrated both qualitative and 
quantitative results to evaluate the effect of the ECA and 
BR modules with the decoder part, as illustrated in Fig. 7 
and Table 1. In nuclei segmentation tasks, the histopatho-
logical images contained complicated cases with higher 
variability in forms and nuclei boundaries in pathology 

datasets may become blurred. Thus, it was hard for the 
network with (backbone + DDC) to segment the nuclei 
without noise and refine the boundaries of nuclei cells, 
as shown in Fig.  7c. Next, we observed that the ECA 
module with the network reduced the noise and gained 
performance by suppressing less significant features, but 
some nuclei cell shapes remained missing. Ultimately, 
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Table 1  Represents the model comparison of each component on the test set, and k denotes the convolutional filters are used to 
extract features

Method MoNuseg test set

K DC IOU PR RC Training Time

Unet [23] + Res-18 [35] – 0.781 0.642 0.774 0.792 211.9

Backbone + Res-34 [35] – 0.793 0.652 0.785 0.801 –

Backbone + DDC – 0.810 0.682 0.783 0.845 –

Backbone + Res-34 + DDC – 0.817 0.692 0.790 0.837 –

Backbone + ECA 3 0.809 0.681 0.778 0.829 –

Backbone + ECA + BR 3 0.815 0.688 0.805 0.827 –

Backbone + DDC + ECA 3 0.820 0.696 0.809 0.848 –

Backbone + Res-18 + DDC + ECA + BR 3 0.829 0.699 0.813 0.846 181.3

MSAL-Net + Res-34 3 0.839 0.706 0.821 0.853 194.5

MSAL-Net + Res-50 3 0.847 0.713 0.816 0.881 317.7

MSAL-Net + Rest-101 3 0.830 0.695 0.801 0.862 429.1
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the residual-based BR and ECA modules worked effi-
ciently to refine the exact boundaries of nuclei cells and 
increased the localization performance, as shown in 
Fig. 7d. Additionally, our network showed superior per-
formance for accurate decoding in nuclei segmentation 
tasks.

Computation analysis
We evaluated the computational cost of segmentation on 
a machine with an NVIDIA GeForce GTX 1080 Ti GPU. 
The nuclei histopathology images with a size of 512 × 512 
were used in all the experiments and the computational 
times reported in Table 1. Our suggested MSAL-Net with 
Res-34 produced the best results with the highest efficacy 
compared to alternative backbones. We also noted that 
the MSAL-Net with Res-50 improved the performance 
but took an amount of training time. Furthermore, as 
shown in Table  2, our proposed MSAL-Net was com-
putationally efficient than other advanced segmentation 
methods.

Discussion
We obtained results using other methods compared 
qualitatively and quantitatively. Figure  6 illustrates the 
visually compared results with three state-of-the-art deep 
learning methods via three examples of histopathological 
images segmented and the red boxes indicated the dif-
ferences. The Unet, Attention-Unet and CE-Net meth-
ods yielded poor results by examining the figures, such 
as introduced noise and missed or wrongly identified 
nuclei. This was because these methods combined spatial 
information from the encoder path with the decoder path 
to complementary spatial information via ski connec-
tions. However, this procedure introduced noise into the 
decoder by bringing the poor feature representation from 
the earlier layers into the decoder. In the multi-organ his-
topathological images, the nuclei contained complicated 

cases with higher heterogeneity in forms and textures. 
Therefore, these methods could not correctly segment 
the nuclei and failed to detect the nuclei location and 
clear boundaries due to the decoder’s weak feature rep-
resentation. Compared to Unet, Attention-Unet, and CE-
Net, our MSAL-Net approach effectively and accurately 
segmented nuclei, refined the borders of complicated his-
topathological images at the nuclei level, and produced 
good segmentation results.

Apart from the visual comparison, the performance of 
our proposed method compared to the first four selected 
state-of-the-art segmentation methods displayed in 
Table 2, such as LinkNet, Unet, Attention-Unet, and CE-
Net. The four widely performance metrics DC, IoU, PR 
and RC were used to evaluate the performance of the 
selected methods along with the proposed method. By 
observing the MSAL-Net ablation experimental evalu-
ation in Table  1, the proposed method outperformed 
selected methods in all DC 0.839, IoU 0.706, PR 0.821, 
and RC 0.853 metrics. In addition, we discovered that 
the lightweight LinkNet approach took less training 
time (178.3) than Unet but performed poorly on the 
MoNuseg test set. Attention-Unet outperformed Unet 
and LinkNet in terms of DC 0.810, IoU 0.678, PR 0.779, 
and RC 0.848, but it performed worse in IoU 0.678 and 
took longer to train (480.6) than CE-Net. Our proposed 
technique outperformed CE-Net, Attention-Unet, and 
Unet in terms of DC 0.839 and IoU 0.706. In contrast, 
we compared our method to other recent advanced seg-
mentation approaches, which had shown efficient per-
formance in nuclei segmentation tasks, such as Bio-Net 
achieved 0.826 DC, MDC-Net reached 0.800 DC, CNN3 
reached 0.804 DC and ASSPU-Net achieved 0.830 DC. 
They are computationally ineffective in nuclei segmenta-
tion due to their complex architecture and high training 
time requirements. Extensive experiments revealed that 
our proposed MSAL-Net outperformed all comparison 
models, reported the best results in Table 2 and showed 
greater efficacy in nuclei segmentation, as shown in 
Fig. 6.

Our research study proposed a model to tackle the accu-
rate segmentation of nuclei in histopathology images. Our 
model introduced an idea of a novel decoder that was inte-
grated with the attention and refinement modules. We 
tested our model through four performance metrics on the 
MoNuseg test set and compared it with the current deep 
learning mainstream approaches. The extensive experi-
ment results visually and quantitatively demonstrated the 
feasibility and superiority of the proposed MSAL-Net in 
nuclei segmentation. We also carried out an ablation test 
on each component of our proposed technique and ana-
lyzed the effectiveness of the ECA and BR modules with 
the decoder. The above study claimed that the proposed 

Table 2  Compared results with state-of-the-art approaches on 
the test set

The “–” symbol denotes the missing values

Method DC IoU PR RC Training Time

LinkNet [40] 0.767 0.625 0.726 0.809 178.3

Unet [23] 0.773 0.548 0.758 0.789 211.9

CE-Net [44] 0.818 0.693 0.809 0.829 271.1

Attention-Unet [27] 0.810 0.678 0.779 0.848 480.6

ASSPU-Net [45] 0.830 0.780 – – 1133.7

MDC-Net [46] 0.802 – – – –

Bio-Net [42] 0.826 0.704 – – –

CNN3 [13] 0.804 0.498 – – –

MSAL-Net 0.839 0.706 0.821 0.853 194.5
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method could effectively segment the nuclei, while still 
there was potential for improvement. Besides, we believe 
that the proposed MSAL-Net can be helpful for other seg-
mentation problems.

Conclusion
This study aimed to introduce a method to improve the 
accurate segmentation of nuclei in histopathology images. 
In this paper, we presented a method called MSAL-Net 
for the nuclei segmentation task, which employed resid-
ual blocks in the encoder structure to improve the feature 
extraction capability and used the DDC block to capture 
broader nuclei context information. The ECA and BR mod-
ules were integrated with decoder structure to learn spatial 
information for better prediction and refine the informa-
tion of nuclei boundaries. Extensive experiments demon-
strated that the proposed MSAL-Net outperformed other 
state-of-the-art methods in visual perception and quanti-
tative metrics using the publicly available MoNuseg data-
set. Furthermore, though the proposed MSAL-Net was 
designed to solve the nuclei segmentation problem, we 
believe it may also be effective for other segmentation chal-
lenges as well, which we want to investigate further in the 
future study.
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